Prove that the ionisation energy of hydrogen atom is 13.6 eV. 

We know that
box enclose straight E space equals negative fraction numerator 2 straight pi squared mK squared straight Z squared straight e to the power of 4 over denominator straight n squared straight h squared end fraction end enclose space space space space space space space space space space space left parenthesis straight n space equals space 1 comma space space straight Z space equals space 1 right parenthesis
straight W space equals space straight k squared fraction numerator 2 straight pi squared me to the power of 4 over denominator straight h squared end fraction open parentheses fraction numerator 1 over denominator straight n subscript 1 superscript 2 end fraction minus fraction numerator 1 over denominator straight n subscript 2 superscript 2 end fraction close parentheses
Ionisation energy is the energy required to remove an electron from ground state to infinity.
Here,              straight n subscript 1 equals space 1 comma space space space straight n subscript 2 space equals infinity

therefore                  straight W space equals straight k squared fraction numerator 2 straight pi squared me to the power of 4 over denominator straight h squared end fraction open parentheses 1 over 1 minus 1 over infinity close parentheses

                            equals space straight k squared fraction numerator 2 straight pi squared me to the power of 4 over denominator straight h squared end fraction

or,              
We know thatIonisation energy is the energy required to remove an elestraight W space equals space fraction numerator left parenthesis 9 cross times 10 to the power of 9 right parenthesis squared cross times 2 left parenthesis 3.142 right parenthesis squared cross times 9 cross times 10 to the power of negative 31 end exponent cross times left parenthesis 1.6 cross times 10 to the power of negative 19 end exponent right parenthesis to the power of 4 over denominator left parenthesis 6.63 cross times 10 to the power of negative 34 end exponent right parenthesis squared end fraction straight J

                        equals space 21.45 space cross times space 10 to the power of negative 19 end exponent straight J space equals space fraction numerator 21.45 cross times 10 to the power of negative 19 end exponent over denominator 1.6 cross times 10 to the power of negative 19 end exponent end fraction eV space equals space 13.4 space eV.
286 Views

Draw a labelled diagram for α-particle scattering experiment. Give Rutherford's observation and discuss the significance of this experiment.

Alpha-particle experiment led rutherford to the discovery of atomic nicleus.  

 
Observations of the α particle experiment. 

i) Most of the alpha particles pass straight through the gold foil. It means that they do not suffer any collision with the gold atoms.

ii) Only about 0.14 % of incident alpha particles are scattered by more than 1o

iii) About 1 alpha particle in every 8000 alpha particles deflect by more than 90o

Significance of rutherford's experiment:

His experiment led him to conclude that, the entire positive charge of the atom must be concentrated in a tiny central core of the atom. The tiny massive central core of the atom was named as the atomic nucleus. 
793 Views

If the short series limit of the Balmer series for hydrogen is 3646 Å, calculate the atomic number of the element which gives X-ray wavelengths down to 1.0 Å. Identify the element. 

Given, wavelength of the balmer series = 3646 Å 

The short limit of the Balmer series is given by the Rydberg's formula, 

              v¯ = 1λ =R122-12v¯ = R4 

         R =4λ= 43646×1010m-1 

Further the wavelengths of the Kα series are given by the relation,

v¯ =1λ = R(Z-1)2 112-1n2 

The maximum wave number corresponds to n = ∞ and, therefore, we must have
 
                      v¯ = 1λ= R(Z-1)2 
         (Z-1)2 = 1               =3646×10-104×1×10-10               = 911.5 

          (Z-1) = 911.5
                    30.2 

                 Z = 31.2 31 

Thus, the atomic number of the element concerned is 31.

We can infer that the element having atomic number Z = 31 is Gallium.
1024 Views

Advertisement

Which state of the triply ionized Be+++ has the same orbital radius as that of the ground state of hydrogen? Compare the energies of two states.


Radius of nth orbit is given by, r = n2h24π2mKZe2 

  i.e.,   r  n2Z 

For hydrogen,  Z = 1, n = 1 in ground state. 

         n2Z = 121 = 1 

For Berylium, Z = 4, as orbital radius is same,n2Z=1 

             n2 = 1 × Z = 1× 4 = 4n = 4 = 2 

Hence n = 2.

Thus, second level of triply ionised Be+++ has same radius as the ground state of hydrogen. 

Now energy of electron in nth orbit is given by, E=-2π2mK2Z2e4n2h2 

               E Z2n2

          E(Be)EH = Z2/n2BeZ2/n2 = 16/41/1 = 4 

Therefore, energy of ionized Be is greater than the energy of hydrogen in the ground state. 
456 Views

Advertisement
In a hydrogen like atom the ionisation energy equals 4 times Rydberg's constant for hydrogen. What is the wavelength of radiations emitted when a jump takes place from the first excited state to the ground state? What is the radius of first Bohr's orbit?

The ionization energy E of a hydrogen-like Bohr atom of atomic number Z is given by, E = -Rz2 = -2πk2z2me4n2h2 

where the Rydberg constant is R=2π2kme4n2h2=2.2×10-18J 

Given that, 
Ionisation energy is equal to four times the rydberg constant. 

i.e.,                E= 4×Rydberg constant   = 4 R, we have 

              4 R = RZ2
or,                 Z =2 

(i) Energy of radiation emitted (E) when the electron jumps from the first excited state to the ground state is given by,

                     E =RZ2112-122    = 4R1-14   = 3 R   =3×2.2×10-18J 

i.e.,                E=6.6 ×10-18J. 

Wavelength of the radiation emitted, λ = hcE    = 6.6 × 10-34 × 3× 1086.6×10-18    = 3×10-8m 

(ii) Radius of the first Bohr orbit, = Bohr radius of hydrogen atomZ= 5×10-112=2.5×10-11m.
292 Views

Advertisement